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so(3,l) versus sp(4, R) as dynamical potential algebra of the 
symmetrical Poschl-Teller potentials 

C QuesneT 
Service de Physique Theorique et Mathematique, C P  229, Universite Libre de Bruxelles, 
Bd du Triomphe, B1050 Brussels, Belgium 

Received 28 June 1988 

Abstract. The results of a previous paper, concerned with the first family of two-parameter 
Poschl-Teller potentials, are used to obtain potential and dynamical potential algebras for 
the subfamily of one-parameter symmetrical Poschl-Teller potentials. They are respectively 
identified with so(3) and so(3, 1) algebras, and shown to be subalgebras of the so(4) 
potential and sI(4, R) dynamical potential algebras of the two-parameter potentials. All 
the Hamiltonian eigenstates, corresponding to the subfamily of potentials with quantised 
potential strengths + differing by an integer, are proved to belong to a single degenerate 
continuous unitary irreducible representation of so(3, l) ,  which may be labelled by gen- 
eralised Young pattern labels [ W O ] ,  where w = -1 +$iv, and is some real parameter. An 
sp(4, W) = so(3,2) algebra is also constructed and shown to provide an alternative choice 
for the dynamical potential algebra of the symmetrical potentials. All the above-mentioned 
eigenstates belong to a single sp(4, R )  unitary irreducible representation of the positive 
discrete series, which may be labelled by its lowest weight (44). Such an alternative choice 
for the dynamical potential algebra, however, does not lead to a unified treatment of the 
one- and two-parameter potentials as does the first one. 

1. Introduction 

In the preceding paper (Quesne 1988, hereafter referred to as I), we extended the so(4) 
potential algebra of the first family of two-parameter Poschl-Teller potentials (Barut 
er al 1987) to an sl(4, R) dynamical potential algebra. We based this construction on 
a relation between the solutions of the first Poschl-Teller equation and the Wigner 
rotation matrices, and showed that all the eigenstates, corresponding to the family of 
potentials with quantised potential strengths (m', m )  differing by integers, belong to 
the carrier space of a single sl(4, R) ladder unitary irreducible representation (irrep), 
%'ladd(O,O; q )  or q), according as m' and m are integral or half-integral, 
respectively. 

In the present paper, we show that the results of I can be easily specialised to the 
subfamily of one-parameter symmetrical Poschl-Teller potentials. For the latter, the 
solutions of the Schrodinger equation can be simply related to the spherical harmonics. 
We also prove that potential and dynamical potential algebras for this subfamily are 
provided by so(3) and so(3 , l )  subalgebras of so(4) and sl(4, R), respectively. 

We then contrast this approach with another one, leading to an sp(4, R) = s0(3,2) 
dynamical potential algebra. The latter is similar to that used by Alhassid et a1 (1983, 
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4502 C Quesne 

1986), dealing with a corresponding subset of the second family of Poschl-Teller 
potentials, and is also related to a recent algebraic study of the spherical harmonics 
(Humi 1987). We emphasise and propose a solution to a problem, previously left 
unnoted, arising in the construction of sp(4, R). 

2. The one-parameter Poschl-Teller equation 

By setting K = A in the two-parameter Poschl-Teller potential (Poschl and Teller 1933) 

K , h > 1  
h2a2 K ( K - ~ )  A(A-1) 
2 M  sin2 (ax)  cos2( ax) 

v=-( + 
where a defines the range of x (x  E [0, ~ / 2 a ] ) ,  we obtain a one-parameter potential, 
symmetrical around ~ / 4 a .  The corresponding Schrodinger equation can be written as 

where n E N  labels the eigenvalues E,, and the wavefunctions i,bn(x). In terms of the 
alternative parametrisation ( m ’ ,  m )  used in I, the condition K = A > 1 leads to the 
relations 

m=O K = p + t  p > t  (2.3) 
where p is substituted for m’.  In accordance with (2.3), the wavefunctions will 
henceforth be denoted by +?)(x). 

As in I, the solutions of ( 2 . 2 )  can be obtained by performing the change of variable 

x = ( T  - e) /2a e E [O,  7 1  (2.4) 

E,  = 2h2a2A,/ M A, = ( p  + n +f)’= ( K  + n)’ n E N .  (2.5) 

l = p + n  n E N  (2.6) 

where 8 is now used instead of p. The eigenvalues are given by 

Provided that 

where 1 and p are restricted to positive integral values, the wavefunctions can be 
expressed as 

+(n‘*)(x) = [(21+ 1)a sin e ~ ~ ’ ~ d : ~ ( e )  

= ( - 1 ) w [ ( 1 + p ) ! ] - 1 ’ 2 [ ( 2 1 + l ) ( 1 - p ) ! a  sin ~ ] ” 2 P ~ ( c o s  e) (2.7) 

where dLo(8 )  is a Wigner rotation matrix element, and Py(cos 8 )  an associated 
Legendre function of the first kind (Biedenharn and Louck 1981). 

By introducing an additional dependence on one auxiliary angular variable cp E 

[ 0 , 2 ~ ) ,  which plays the same role as the variable a in I ,  the functions (2.7) are 
transformed into the extended wavefunctions 

*?)(x, cp) = ( 2 ~ ) - ” ’  exp(ipq)+?)(x, cp) 

= (2a sin yw( e, cp) (2.8) 
where Ylw( 8, 9) denotes a spherical harmonic. Hence, the construction of a dynamical 
potential algebra for the subfamily of symmetrical Poschl-Teller potentials is equivalent 
to that of a dynamical algebra for the spherical harmonics. 
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It is important to note that the correspondence between the wavefunctions $Lp’(x) 
and the Legendre functions Py(cos e) ,  or between the extended wavefunctions 
VF’(x, cp) and the spherical harmonics Ylp(6, cp) is not one-to-one. Indeed, from (2.3), 
the functions $F)(x)  may only be considered as true wavefunctions for positive p 
values. On the other hand, from the symmetry properties of Legendre functions 
(Biedenharn and Louck 1981), it results that 

$jl“’(x) = (-l)p$:-qx). (2.9) 

Hence, for negative p values, the functions $F’(x) are but replicas of the wavefunc- 
tions. Moreover, the functions $f’(x) have no counterpart in the set of wavefunctions, 
and must therefore be considered as unphysical. In conclusion, a relation between 
the (extended) solutions of the one-parameter Poschl-Teller equation and the Legendre 
functions (spherical harmonics) can be obtained only at the cost of adding to the 
former one replica of the whole set, as well as some unphysical functions. 

In the next section, we shall proceed to construct a potential algebra for the 
symmetrical Poschl-Teller potentials, then extend it to a dynamical potential algebra. 

3. The so(3) potential algebra of the symmetrical Poschl-Teller potentials and its 
embedding into an so(3,l) dynamical potential algebra 

Equation (2.7) states that the wavefunctions $jl“’( x),  corresponding to the symmetrical 
Poschl-Teller potentials, form the m = 0 subset of the set of wavefunctions associated 
with the two-parameter potentials. As we showed in I that so(4) and sl(4,R) are 
potential and dynamical potential algebras for the two-parameter potentials, respec- 
tively, one may suspect that restriction to appropriate subalgebras will yield potential 
and dynamical potential algebras for the symmetrical potentials. 

Let us first consider the so(4) = su(2) 0 su(2) potential algebra of the two-parameter 
Poschl-Teller potentials, whose generators jo ,  jI, ko and k* were defined in equation 
(3.18) of I .  Only those generators, which do not change the m value, leave invariant 
the subspace spanned by the wavefunctions with m = 0. Such operators are jo  and .?, , 
and will henceforth be denoted by io and i,?. After deleting their dependence on y 
and substituting cp for a, they can be written as - 
Lo = -id, i, = e*”[*(2a)-’dX - i  cot(2ax)a, *$ cot(2ax). (3.1) 

It can be easily checked that they satisfy both the so(3) commutation relations 

[io, i,] = *i* [i+, t-] = 2 t 0  (3.2) 

and the so(3) hermiticity properties 

(io)+ = to (i*)+ = i= (3.3) 

with respect to the measure dx dcp. 

equation (3.19) of I ,  and is given by the relations 
Their action on the extended wavefunctions (2.8) can be directly obtained from 

(3.4) 

t These operators should not be confused with the so(4) generators LNu considered in 1. 
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and a similar equation for i-, obtained from (3.3). Moreover, the so(3) Casimir 
operator is connected with the Hamiltonian of equation (2.2) (where -ia, has been 
substituted for p )  by the relation 

I?= i( L“+L“- + L”-L“+) + i:, = M(2h2u2)-’H - f .  

i 2 9 k ) ( x ,  cp) = l ( I +  l)V:*’(x, cp) = ( A n  -$ )9p) (x ,  cp) 

(3.5) 

(3.6) 

Its action on the extended wavefunctions is given by 

where 1 is defined in (2.6). 
The extended wavefunctions 9:w)(x, cp), corresponding to a given 1 value, therefore 

belong to the carrier space of an so(3) irrep characterised by 1. Since the so(3) generators 
i, and i- give rise to transitions between extended wavefunctions corresponding to 
the same energy, but to potential strengths differing by integers, we conclude that so(3) 
is a potential algebra for the symmetrical Poschl-Teller potentials. 

A similar procedure may be used to construct an so(3) symmetry algebra for the 
spherical harmonics, considered as special cases of rotation matrix elements. This is 
just the standard angular momentum algebra in spherical coordinates, which will be 
considered again in the next section. 

Let us now turn to the sl(4, R) dynamical potential algebra of the two-parameter 
Poschl-Teller potentials, generated by To, j ,  , k,, k, and the operators fuT, U, T = + 1, 
0, -1, defined in equation (4.18) of I. Those operators, which leave m unchanged, 
are yo, j ,  and Tu,, U = +l, 0, -1. After deleting their dependence on 7, substituting 
cp for a, and renormalising Tgo, we obtain the operators io and i,, defined in (3.1), 
as well as the operators 

A, = i(2ul-I sin(2ux)a, +$(2i - 7) cos (2ux) (3.7u) 

and 

A, = e*’v[i(2u)-’ cos(2ux)aX ~cosec(2ux)a,  -f i  cosec(2ux) -$(2i - 7) sin(2ux)l 
(3.7b) 

where, as in I, 7 is a parameter which may take any real value. 
Since the operators (3.7) satisfy the commutation relations 

[io, A,] = 0 

[ i,, A,] = 0 [ i,, A,] = *2A, [i*, A,] = FA, (3.8) 

[A,, A+T L”, 

(Ao)+- = A, (A*)> = AT (3.9) 

[Lo, A*] = *A, 

[A,, A-] = -2 i ,  

and the hermiticity properties 

with respect to the measure dx dcp, we conclude that, together with io and L”,, they 
generate an so(3, 1) algebra. 

Their action on the extended wavefunctions directly results from equations (4.19) 
and (4.20) of I ,  and is given by 

Ao9$)(x,  cp) = -[i(p + n + 1) - $ 7 1 [ ( n +  1)(2p + n + I ) ] ’ ’ ~  

~ [ ( 2 p + 2 n + 1 ) ( 2 p + 2 n + 3 ) ] - ” ~ ~ ~ ’ , ( ~ ,  cp)+[i(p+n)+$qI  

x [n(2p + n)1”~[(2p  +2n - 1)(2p +2n + 1)]-”~9!,t)~(x, cp) ( 3 . 1 0 ~ )  
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A+w.$)(x, c p )  = [i(p + n  + 1) -:7][(2p + n + 1)(2p + n + 2 ) 1 ” ~  

x [ ( 2 p  + 2 n + 1 ) ( 2 p + + 2 n + 3 ) ] - ” 2 ~ F + ’ ) ( ~ ,  cp)+[i(p+n)+i7] 

X[(n- l )n]1/2[(2p+2n -1)(2p +2n+l)]-”2W.ll*f’’(x, cp) (3.10b) 

and a similar relation for A-, obtained from (3.9). From (3.10a), it follows that the 
operator A, gives rise to transitions between extended wavefunctions W.F)(x, c p )  and 
W.$)(x, cp), n’=n-1 ,  n+1,  corresponding to the same potential, but to different 
energies. The so(3, 1) algebra is therefore a dynamical potential algebra for the 
symmetrical Poschl-Teller potentials. 

Energy raising and lowering operators 3,,, 2,,, corresponding to the ladder operators 
of the factorisation method (Infeld and Hull 1951), can be easily constructed in the 
enveloping algebra of so(3, 1). A possible choice is 

B,, = ( 2 , , + , ) ’ = ( 2 p + n + 1 ) A 0 + A ~ i +  (3.11) 

where 

B ~ W . ; ~ ) ( X ,  cp)=[ - i (p++++)+~77] [ (n+1) (2p+++1) (2p+22n+1) ]”2  

x (2p  +2n +3)-”*92)1(x,  cp) (3.12) 

and 

(3.13) 

Raising and lowering operators 3, 2, which do not refer to the index n of the function 
being operated upon, can be obtained from (3.11) by considering the operator 

L.. (L*+:)*’*- ;  (3.14) 
- -  

whose eigenvalue, corresponding to 9?), is 1 = p + n. They are given by 

3 = 2 + = A o ( i + i , + 1 ) + A i +  (3.15) 

and act on 9:) in the same way as B,, and z,,, respectively. 
A similar procedure may be used to construct an so(3, 1) dynamical algebra for 

the spherical harmonics, considered as special cases of rotation matrix elements. Such 
an algebra was previously obtained by another method (Vilenkin 1968). 

As shown by (3.4) and (3.10), all the functions 9 $ ) ( x ,  c p ) ,  for which p = 1, 2 , .  . . , 
and n = 0, 1,2,  . . . , belong to the carrier space of a single degenerate continuous unitary 
irrep of so(3, 1) (Gel’fand et al 1963, Naimark 1964). As additional evidence, we note 
that, in the realisation defined by (3.1) and (3.7), the two so(3, 1) Casimir operators 

i’-”i*=;(L+i-+L_L+)+i~-f(A+ILi_+A-A+)-A~ (3.16a) 

and 

i. “i = f( L+A- + LA+) + LOAO (3.16 b )  

assume unique numerical values, given by 

4 d 2  i . / i = O .  (3.17) 

Comparison with the eigenvalues w ( w  +2) and 0 of the so(4) Casimir operators, 
corresponding to a one-row irrep, shows that the so(3 , l )  irrep we have to deal with 
may be labelled by the (generalised) Young pattern [WO], where w = -1 +$ir]. Note 

L -2 - A 2 = - 1 - ( i  - 
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that a basis of its carrier space includes not only the extended wavefunctions V F ) ( x ,  cp), 
where p = 1,2 , .  . . , and n = 0, 1 ,2 , .  . . , but also the additional functions V $ ) ( x ,  cp), 
where p =0,  -1, -2,. . . , and n = 0 , 1 , 2 , .  . . . 

In conclusion, we have proved that the so(3) and so(3, l )  subalgebras of so(4) and 
sl(4, R) provide us with potential and dynamical potential algebras for the symmetrical 
Poschl-Teller potentials, respectively. Their construction and the determination of 
their action on the wavefunctions have been carried out in a straightforward way from 
the corresponding results for the two-parameter Poschl-Teller potentials. In the next 
section, we shall contrast this approach with another one leading to an sp(4,R) 
dynamical potential algebra. 

4. The sp(4, R) dynamical potential algebra of the symmetrical Poschl-Teller 
potentials 

By applying the algebraic version (Miller 1964,1968, Kaufman 1966) ofthe factorisation 
method (Infeld and Hull 1951), Humi (1987) has recently constructed a dynamical 
algebra for the spherical harmonics, which he claimed to be so(3,2) = sp(4, R). 
However, if its generators have appropriate commutation relations, they do not have 
the required hermiticity properties to qualify for a skew-Hermitian representation of 
so(3,2) 2: sp(4, R) generators (corresponding to a unitary representation of the associ- 
ated group). The origin of this shortcoming can be traced back to the factorisation 
method. The generators are indeed obtained from ladder operators arising from both 
factorisations of class I and 11, and corresponding to different scalar products. In the 
present section, we shall first show how such a drawback can be cured and a skew- 
Hermitian representation of so(3,2) = sp(4, R) constructed, and will then apply the 
results obtained for the spherical harmonics to the symmetrical Poschl-Teller potentials. 

The Legendre functions Py(cos e)  are solutions of the differential equation 

[-di,-cot e d ,+p2cosec2 S - I ( I + I ) ] P ~ ( C O S  e) = o .  (4.1) 
Raising and lowering operators in p are obtained from a class I factorisation (Infeld 
and Hull 1951). After introduction of one extra angular variable cp E [0 ,2n) ,  they lead 
to the standard angular momentum operators 

L,  = e*'+'(*a,+i cot ea,) (4.2) 
acting on the spherical harmonics Y,,,(e, cp) as follows: 

(4.3) 

(4.4) 
characterised by the property 

L,Y,,(@, cp) = pY,,(4 cp) (4.5) 
the operators L,  and L- span an so(3) algebra. Their commutation properties and 
hermiticity properties are 

[Lo, L*1= *L* [L, ,  L-]=2Lo (4.6) 
and 

( Lo).r = Lo ( L * ) ? = L , .  (4.7) 
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Raising and lowering operators in I are derived from a class I1 factorisation (Infeld 
and Hull 1951). By introducing an additional dependence on one extra angular variable 
x E [0,277), they give rise to the operators (Humi 1987) 

U*=e*ix[i.sin e a,+cos e(-ia,+f*i:t)]. (4.8) 

U, = -idx +$ (4.9) 

Together with 

the latter span a Lie algebra since 

[U,, U*] = f U* [ U + ,  U - ]  = -2u0. (4.10) 

The action of the operators U, and U ,  on the functions 

(4.11) 

is given by 

uoz/,(e, cp, X I  = U+i:t)Z,J4 cp, x) (4.12) 

and 

U+z,,(e, p,x) = [ ( i - ~ + i ) ( i + ~ + i ) ( 2 i + i ) ] 1 ’ 2 ( 2 1 + 3 ) - 1 / 2 ~ ~ + l , , ( 0 ,  p,x) ( 4 . 1 3 ~ )  

U-z,Je, c p , x ~ = ~ ~ ~ - p ~ ~ ~ + ~ ~ ~ 2 ~ + ~ ~ 1 1 ’ * ~ 2 ~ - ~ ~ - 1 ’ 2 ~ / - l , ~ ~ ~ ,  9,x) (4.13 b )  

respectively. Equations ( 4 . 1 3 ~ )  and (4.13b) directly result from the action of the ladder 
operators of the factorisation method on Y,,( 6, c p )  by taking into account the change 
of normalisation occurring when going from one factorisation to the other (Infeld and 
Hull 1951, Humi 1987). 

From (4.10), Humi concludes that the operators U,, and U,  (that he actually denotes 
by KO and K,) span an so(2 , l )  algebra. However, since the functions Z/,( 0, cp, x) are 
orthonormal with respect to a scalar product defined in terms of the measure 
sin 6 d e  dcp dx, from (4.12) and (4.13), it follows that 

(U,)+ = U0 (4.14) 

but that 

( U , ) + #  U- (4.15) 

with respect to this scalar product. This can also be shown directly on the differential 
operators (4.8) and (4.9). Hence, the operators U, and 0, do not provide a skew- 
Hermitian representation of so(2, 1 ) .  

Operators with the right Hermitian conjugation properties can be constructed in 
the following way. From (4.12), we note that, in the space spanned by the orthonormal 
functions .ZIP( 0, cp, x), 1 = 0,  1 ,  2, . . . , -1 s p S I ,  the Hermitian operator U, is positive 
definite. Hence, in such a space, the operators 

U ,  = 0, U ,  1’2 (4.16) 

are well defined. It can be easily shown that, together with U,, they satisfy commutation 
relations similar to (4.10). Moreover, from (4.12) and (4.13), it follows that their action 
on the orthonormal functions Z/,( 0, cp, x) is given by 

u+zl,(e, c p , X ) = [ ( ~ - ~ + ~ 1 ) ( ~ + ~ + $ - 1 ) l ’ ~ 2 ~ / + l , ~ ( e ,  cp,x) ( 4 . 1 7 ~ )  
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showing that 

(U,)+ = U-.  (4.18) 

The operators U, and U,  are therefore the searched-for so(2, 1 )  generators. 
From (4.12) and (4.17), we conclude that the functions Z,,(e, cp, x), corresponding 

to 1 = lpl, lp /+  1 , .  . . , and a given p value, span the carrier space of an so(2 , l )  unitary 
irrep, belonging to the positive discrete series. The lowest weight function is 
qpl,,( 8, cp, x) and its weight Ipl+i may be used to characterise the irrep. The so(2, 1 )  
Casimir operator 

(4.19) u2 = U+ U- - U;+ U, 

is such that 

u’z/,(e, cp, x) = -(lPl+;)(lPl -f)z/,(e, cp, x). (4.20) 

By forming the commutators of U+ and U- with L,  and L- (now acting in the 

V*=*[L*,  U,] w, = k[L , ,  U,]. (4.21) 

space of functions Zf,), we obtain four additional operators: 

(4.22) 

where 

v* = *[L,, U,] 
- - e * i ( , + ~ x ) [ *  cos e a, + i cosec e a,+ - sin e( -id, + t * 9 1  (4.23) 

and 

W * = + [ L , ,  U,] 
=eTi ( ,+ -x ) [~cos  e a , + i  cosec ~ a , + s i n  e(- ia ,+f*t)]  (4.24) 

As can be easily checked, the ten operators Lo,  L,, U,, U,, V ,  and W, close 

( V J =  v, (W,)?= w, (4.25) 

in addition to (4.7), (4.14) and (4.18). From their commutation relations and hermiticity 
properties, it can be recognised that they provide a skew-Hermitian representation of 
sp(4, R). Their relation with the standard sp(4, R) generators E, = (Ej j )+,  D i  = DJi, 
D.. Y = D.. J‘ = (ob)’, i, j = 1 ,  2 (Deenen and Quesne 1984) is 

correspond to the operators R, ,  - L - ,  L ,  and - R -  of Humi (1987), respectively. 

under commutation and satisfy. the relations 

El, = LO+ U, E22=-LO+ U, E12 = L+ Ezl  = L- 

D:, = V+ D:’= U,  D:’= W+ (4.26) 

D , ,  = V- D12= U- D22 = W- . 
The non-zero commutators of such operators are given by 

[ Ekll = 6jkEil - 6ijEkj 
[E,, Dill = ejkDT/ $. 6j/D:k 
[ D,, D:,] = &E, + 6,/Ekj -k 6j&, 4- 6j/Eki. 

[Eij, Dkll = -8ikDjI - 6ilDjk (4.27) 
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The set of generators (4.26) can be divided into three subsets of raising, weight and 
lowering type as follows: 

D;, 6 2 ;  E,, ; D,, E21 

where the subsets are separated by semicolons. 

determined from (4.3), (4.5), (4.12), (4.17) and (4.21), and is given by 

(4.28) 

The action of the sp(4, R) generators on the functions Z,,(O, cp, x )  can be easily 

ElIZ/,(4 cp ,X)=( l+P++t)Z/ , (& P , X )  

E22Z/,(& c p , X ) = ( l - - P + + ) z / , ( 8 ,  P , X )  

El2Z/,(8, c p , x ) = [ ( ~ - ~ L ~ ~ + ~ + ~ 1 ) 1 1 ' 2 ~ / , , + 1 ( ~ ,  a x )  

~ : 2 z / , ( 4  cp ,x)=[( l -~++1)(~+~++1)1 ' /2z /+l , , (~ ,  cp,x) 
a 2 z / , ( 4  c p , X ) = [ ( ~ - ~ + 1 ) ( ~ - ~ + 2 2 ) 1 1 ' 2 z / + l , , - * ( e ,  cp,x) 

G Z / , ( 4  c p , x ) = [ ( l + p +  l ) ( ~ + ~ + 2 ) 1 " 2 z / + l , , + ~ ( ~ ,  cp, X I  (4.29) 

and similar relations for E z l ,  Dl l ,  D,2 and D22,  resulting from their hermiticity 
properties. The set of functions Z,,( 8, cp, x ) ,  1 = 0, 1,2, . . . , -1 S p c 1, therefore span 
the carrier space of a single sp(4, R) unitary irrep, belonging to the positive discrete 
series. The lowest weight function is Zoo( 8, cp, x). Its weight (f,i) may be used to 
characterise the irrep, which is denoted by (4;) (Deenen and Quesne 1984). In the 
present realisation, the two Casimir operators of sp(4, R j assume unique numerical 
values. The quadratic one, for instance, is given by 

(4.30) , I 

Since the sp(4, R) and so(3,2) algebras are isomorphic, we may also relate the ten 
operators Lo, L,, U,, U,, V, and W ,  with so(3,2) generators Mob = -Mbo = (Mah)', 
a, b = 1, .  . . , 5 ,  satisfying the commutation relations 

(4.31) LMab, Mcdl =i(gacMhd -gadMbc-ghcMad +gbdMac) 

where the metric tensor is gab = diag(+l, $1, +1, -1, -1). The relations are 

MI2 = Lo M23 = f( L+ + L-) ~ 3 , = - f i ( L + - L - )  

M45= U, M35 = +( U+ + U-)  M34 = -fi( U+ - U-) 
(4.32) 

Mi4 = $i( V+ - V- - W+ + W-)  M24=$( V++ V-+ W + +  W-)  

M,,=$(-V+- V-+ W++ W-)  M25 =ti(  V, - V- + W+ - W-) .  

The description of the algebra in sp(4, R) terms being much simpler, we shall pursue 
its analysis in so(3,2) terms no further and proceed to apply our results to the 
symmetrical Poschl-Teller potentials. 

In the same way as we extended the spherical harmonics Y,,(6, cp) to functions 
Z/,( 8, cp, x ) ,  let us go from *? ' (x ,  cp) to the new functions 

Z?'(x,  cp, x )  = (2.rr)-'l2 exp[i(p + n)x]*","'(x, cp) 

= (27r-I exp[ipcp +i(p + n ) x I + ? ' ( x ) .  (4.33) 



4510 C Quesne 

From (2.6), (2.8) and (4.11), the latter can be expressed in terms of the functions 
Z,, (8, cp, x) by the relation 

(4.34) 

Hence, sp(4, W )  generators acting in the space spanned by the functions Z$’(x, cp, x), 
p = 0, *l ,  1 2 , .  . . , n = 0, 1, 2, .  . . , can be derived from the corresponding operators 
for the functions ZIP( 8, cp, x) by applying a similarity transformation by (sin 
followed by the change of variable (2.4). The resulting operatois are dznoted by the 
same symbols with an extra tilde. In addition to the generators Lo and L,  of the so(3) 
potential algebra, already obtained in (3.1), we find the additional operators 

f io=-iax+f 

fi* = e*1x[~(2a)-‘  sin(2ax)aX + i  cos(2ax)ax - +  cos(2ax)l f i i1 l2  

Z:)(X, cp, x) = (2a sin e ) ’ /2 z , , (o ,  cp, x). 

?* = f i A / 2  e * t ( Q + X )  { * (2a)-’ cos(2ax)~,  + i  cosec(2ax)a, + i  sin(2ax)a, 

-t[sin(2ax) * cosec(2ax)l} 30”~ (4.35) 

+i[sin(2ax) * cosec(2ax)l} 

@* = f i ’ y 2  e ” “ v - X ’  { * (2a)-’ cos(2ax)~, + i  cosec(2ax)a, - i  sin(2ax)a, 

They satisfy hermiticity properties similar to (4.14), (4.18) and (4.25), with respect to 
the measure dx dcp dx. From them, sp(4, W )  generators in standard form, &, 6; and 
d,, can be obtained by using relations similar to (4.26). 

From (2.6) and (4.29) the action of these operators on the extended wavefunctions 
S p ) ( x ,  cp, x), p = 1, 2, .  . . , n =0,  1 ,2 , .  . . , is given by 

E l l E y ( x ,  cp, x) = (2p + n +i)E?)(X, cp, x) 
E 2 2 E y ( x ,  cp, x) = ( n  +&)Z:pyx, cp, x) 
E & j ( X ,  cp, x) = [n(2p + n + l)]1’2Z!p(x, cp, x) 
E;,Z:)(X, (9, x) = [(2p + n+ 1)(2p + n +2)]i’2Z?+1)(x, cp, x) 
d : 2 ~ p ) ( x ,  cp, x) = [ ( n  + 1)(2p + n + I ) I ” ~ E ~ ~ ’ , ( X ,  cp, x) 
~i ,~ : j l l * ) (x ,  cp, x) = [ ( n  + l ) ( n  +2)]1’2~%<’)(x,  cp, x) 

(4.36) 

- L  

and similar relations for E21, d,, , d,, and d12. All such functions belong to the 
carrier space of an sp(4, R )  irrep (fi), whose lowest weight function is the unphysical 
function 

- ( O )  so (x, cp, x) = (2.rr)-’[a ~ i n ( 2 a x ) l ” ~ .  (4.37) 

or - ( I * )  corresponding to the same potential, but to different energies, and are therefore 
The generators d;2 and dI2 give rise to transitions between functions S $ )  and Z%)l 

energy raising and lowering operators, respectively. Hence, sp(4, W) is an alternative 
dynamical potential algebra for the symmetrical Poschl-Teller potentials. 

5. Conclusion 

In the present paper, we have proved that the so(3) potential algebra of the symmetrical 
Poschl-Teller potentials can be embedded into either an so(3, 1) algebra, or an 
sp(4, R) = so(3,2) one, and that both of them may serve equally well as a dynamical 
potential algebra. 
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However, if so(3,l)  can be obtained as a subalgebra of the sl(4, R) dynamical 
potential algebra of the two-parameter Poschl-Teller potentials, the same is not true 
for sp(4, R).  Comparison of (3.1) and (4.35) with (3.18) and (4.18) of I indeed shows 
that the embedding of sp(4, R )  into sl(4, R) ,  although conceivable in principle, cannot 
be carried out with the present realisations. Moreover, extension of the s0(3,2) algebra, 
isomorphic to sp(4, R),  to an so(4,2) algebra for the two-parameter potentials must 
be ruled out for reasons detailed in I .  

Hence, only so(3, 1) leads to a unified treatment of the one- and two-parameter 
Poschl-Teller potentials, and, for this reason, should supersede sp(4, R) as a dynamical 
potential algebra of the one-parameter symmetrical Poschl-Teller potentials. 
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